Human umbilical cord perivascular cells improve human pancreatic islet transplant function by increasing vascularization
نویسندگان
چکیده
منابع مشابه
Extracellular Vesicles Derived from Human Umbilical Cord Perivascular Cells Improve Functional Recovery in Brain Ischemic Rat via the Inhibition of Apoptosis
Background: Ischemic stroke, as a health problem caused by the reduced blood supply to the brain, can lead to the neuronal death. The number of reliable therapies for stroke is limited. Mesenchymal stem cells (MSCs) exhibit therapeutic achievement. A major limitation of MSC application in cell therapy is the short survival span. MSCs affect target tissues through the secretion of many paracrine...
متن کاملIn-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells
Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...
متن کاملIn Vitro Differentiation of First Trimester Human Umbilical Cord Perivascular Cells into Contracting Cardiomyocyte-Like Cells
Myocardial infarction (MI) causes an extensive loss of heart muscle cells and leads to congestive heart disease (CAD), the leading cause of mortality and morbidity worldwide. Mesenchymal stromal cell- (MSC-) based cell therapy is a promising option to replace invasive interventions. However the optimal cell type providing significant cardiac regeneration after MI is yet to be found. The aim of ...
متن کاملDifferentiation and migration properties of human foetal umbilical cord perivascular cells: potential for lung repair
Mesenchymal stem cells (MSC) have been derived from different cultured human tissues, including bone marrow, adipose tissue, amniotic fluid and umbilical cord blood. Only recently it was suggested that MSC descended from perivascular cells, the latter being defined as CD146⁺ neuro-glial proteoglycan (NG)2⁺ platelet-derived growth factor-Rβ⁺ ALP⁺ CD34⁻ CD45⁻ von Willebrand factor (vWF)⁻ CD144⁻. ...
متن کاملSilencing BRE Expression in Human Umbilical Cord Perivascular (HUCPV) Progenitor Cells Accelerates Osteogenic and Chondrogenic Differentiation
BRE is a multifunctional adapter protein involved in DNA repair, cell survival and stress response. To date, most studies of this protein have been focused in the tumor model. The role of BRE in stem cell biology has never been investigated. Therefore, we have used HUCPV progenitor cells to elucidate the function of BRE. HUCPV cells are multipotent fetal progenitor cells which possess the abili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Science Translational Medicine
سال: 2020
ISSN: 1946-6234,1946-6242
DOI: 10.1126/scitranslmed.aan5907